Ir arriba
Información del artículo

Power line communication transfer function computation in real network configurations for performance analysis applications

L. González, P. Frías, C. Mateo

IET Communications Vol. 11, nº. 6, pp. 897 - 904

Resumen:

Despite Power Line Communication is considered a cost-effective solution to communicate electronic devices across the power system, the performance of this technology is highly affected by physical channel factors like the presence of noise and signal attenuation. Such phenomena are mainly determined by the characteristics of the electrical infrastructure as well as by the network topology. This article presents an analytical approach to systematically compute the signal attenuation between any pair of nodes in real electric power distribution network topologies based on transmission-line theory and graph theory. The proposed methodology has been applied to obtain the attenuation matrix of two representative networks for low and medium voltage. Additionally, the results have been used to analyse the communication performance of these networks, where the low voltage network shows better results due to the reduced number of nodes and network length. The conclusions of this study motivate the application of this methodology to power line communication networks planning.


Índice de impacto JCR y cuartil WoS: 1,443 - Q3 (2017); 1,500 - Q3 (2023)

Referencia DOI: DOI icon https://doi.org/10.1049/iet-com.2016.0135

Publicado en papel: Abril 2017.

Publicado on-line: Marzo 2017.



Cita:
L. González, P. Frías, C. Mateo, Power line communication transfer function computation in real network configurations for performance analysis applications. IET Communications. Vol. 11, nº. 6, pp. 897 - 904, Abril 2017. [Online: Marzo 2017]


    Líneas de investigación:
  • *Smart Grids
  • *Automatización y Comunicaciones Industriales

pdf Previsualizar
pdf Solicitar el artículo completo a los autores